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Introduction 

• Programming (“mapping”) a CI involves 
subjective feedback: 

 
– Detection of electrical pulse trains (T-levels) 
– Most comfortable or upper comfort levels (C/M-

levels) 
– Loudness balancing 
– Pitch ranking 
– Subjective preferences or speech perception to 

compare maps with different parameters (e.g., 
strategy type, stimulation rate) 



Introduction 

• What if you can’t get that behavioral feedback 
or what you get is unreliable? 

̶ Monopolar stimulation: 
• Levels more uniform 
• Better for interpolation 
• Requires fewer 

behavioral responses 
̶ Objective measures 

 



Introduction 

• Objective measures are used to: 
 

– Verify device function 
– Verify auditory pathway function 
– Programming guidance when behavioral feedback 

is limited or absent 



Introduction 

• Most common objective measures: 
 

– Electrode impedance 
– Electrically evoked compound action potential 

(ECAP) 
– Electrically evoked stapedial reflex threshold 

(ESRT) 



Electrode Impedance 

• Measured via device’s telemetry capabilities 
 

• Informs of: 
– Short circuits 
– Open circuits 
– Voltage compliance 
– Atypical impedance 

 



Electrode Impedance 

• Possible consequences of including 
abnormally functioning electrodes in maps: 

 
– Non-auditory percepts 
– Poor sound quality 
– Pitch confusions/reversals 
– Reduced performance 

 



Electrode Impedance 

• Short/open circuits can be easily identified 
and flagged in the commercial software 

 Open circuit in Cochlear’s Custom Sound 



Electrode Impedance 

• Short/open circuits can be easily identified 
and flagged in the commercial software 

 Short circuit in Advanced Bionics’ SoundWave 



Electrode Impedance 

• Short/open circuits can be easily identified 
and flagged in the commercial software 

 Open circuit in MED-EL’s Maestro 



Electrode Impedance 

• “Out of voltage compliance” 
– Ohm’s Law: V=IR 
– Insufficient voltage to achieve the current 

(amplitude) requested 
– Lengthen pulse duration so amplitude can be 

reduced for same overall charge 

 
 

 

Voltage compliance 
limit 



Electrode Impedance 

• Voltage compliance not always flagged and 
not automatically limited 
 
 

 



Electrode Impedance 

Neuburger et al. (2009): 
 

• Stimulating when OVC can result in: 
– Potential for asymmetric current pulses 
– Insufficient loudness growth  
– Further increases in impedance 

 
• Recommend widening pulse duration to avoid 

OVC 
 



Electrode Impedance 

• Atypical impedance requires longitudinal 
monitoring (Cochlear Ltd. 2011; Cullington 2013)  

 



ECAP 

• Measured via device’s telemetry capabilities 
• Aggregate response of auditory neurons 

 



ECAP 

• Measured via device’s telemetry capabilities 
• Aggregate response of auditory neurons 

 



ECAP 

• Informs of: 
 

– Device function 
– Auditory nerve 

function 
– Spatial excitation 

patterns (potential 
indications of 
electrode foldover) 
(Grolman et al. 2008) 

 
Fig. 2, Grolman et al. (2008) 



ECAP 

• Used to guide mapping 
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ECAP 

• Used to guide mapping 
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Fig. 3b, Hughes et al (2000) 



ECAP 

• But in some cases, ECAPs don’t predict map 
profile: 

 

Fig 4, Holstad et al (2009) 



ECAP 

• Used to guide mapping 
 

Smoorenburg et al (2002) 



ECAP: Important Considerations 

• ECAPs almost always fall above behavioral 
threshold  
– AUDIBLE 
– Starting point for conditioning for behavioral 

testing 
 

• May fall within map dynamic range or above 
C/M.  Contributing factors: 
– Map rate 
– How upper comfort levels are defined 
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– Effect of map rate: 
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ECAP: Important Considerations 

– Effect of how upper end of DR is defined: 

Upper Boundary=MCL
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ESRT 

• Similar to acoustic counterpart; CI provides 
stimulus 

 

Figure 6-1, Hughes (2012) 



ESRT 

• Good correlation with upper comfort levels, 
but can also overestimate UCL. 

• Again, upper limit of DR is defined differently. 
 

Fig. 2, Hodges et al. (1999) Fig. 1, Buckler et al. (2003) 
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ESRT 

• Good to use for young prelingually deafened 
children who lack the concept of “loud” 
 

• More challenging to measure than ECAP 
– ESRT requires healthy middle ear 
– Recipient must sit still and maintain pressurized seal 
– ESRT measurable in ~65-80% of CI users (e.g., Hodges et al. 

1999; Caner et al. 2007; Wolfe & Kasulis 2008)  
– ECAP measurable in ~95% of CI users (e.g., Cafarelli Dees et al. 

2005; van Dijk et al. 2007)  

 



Performance 

• Speech perception in adults with ECAP-based 
maps or with ESRT-based maps show similar 
or slightly poorer performance compared with 
behaviorally measured maps. 
(e.g., Seyle & Brown 2002; Smoorenburg et al. 2002; Hodges et al. 1997; Wolfe & Kasulis, 
2008)  

 



Conclusions 

• Objective measures offer valuable information 
when subjective/behavioral feedback is not 
available. 
 

• Predictive ability is not precise, but can be 
sufficient enough to provide adequate 
audibility for speech/language development 
while children mature. 
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